

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-153329

Use of Numerical Models
as Data Proxies for
Approximate Ad-Hoc
Query Processing

Kamimura, R., G. Abdulla, C. Baldwin, T. Critchlow, B. Lee, I. Lozares,
R. Musick, N. Tang

This article was submitted to the 7th Joint Conference on
Information Systems, Cary NC

September 2003

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 1

Use of Numerical Models as Data Proxies for
Approximate Ad-Hoc Query Processing

R. Kamimura1, G. Abdulla1, C. Baldwin1, T. Critchlow1, B. Lee2, I. Lozares1, R. Musick3, N. Tang1
1 CASC, Lawrence Livermore National Laboratory, CA

2 Department of Computer Science, University of Vermont, VT
3Ikuni, Inc., CA

Abstract
As datasets grow beyond the gigabyte scale, there is an
increasing demand to develop techniques for dealing/interacting
with them. To this end, the DataFoundry team at the Lawrence
Livermore National Laboratory has developed a software
prototype called Approximate Adhoc Query Engine for
Simulation Data (AQSim). The goal of AQSim is to provide a
framework that allows scientists to interactively perform adhoc
queries over terabyte scale datasets using numerical models as
proxies for the original data. The advantages of this system are
several. The first is that by storing only the model parameters,
each dataset occupies a smaller footprint compared to the
original, increasing the shelf-life of such datasets before they
are sent to archival storage. Second, the models are geared
towards approximate querying as they are built at different
resolutions, allowing the user to make the tradeoff between
model accuracy and query response time. This allows the user
greater opportunities for exploratory data analysis. Lastly,
several different models are allowed, each focusing on a
different characteristic of the data thereby enhancing the
interpretability of the data compared to the original. The focus
of this paper is on the modeling aspects of the AQSim
framework.

1. Introduction
Advances in computer technology and decreasing hardware
costs have facilitated the ease by which large volumes of data
are measured, generated, and stored. While this is viewed as
an information bonanza, the result has often been a flood of
data with limited means of making effective use of it. The
central problem is that of size. When datasets reach the
gigabyte level and beyond, storing the information as well as
being able to interact with it become increasingly constrained
in space or time or in some cases both. While research is
being conducted in developing mass storage devices, there
will always be limited resources to accommodate the
dataflow. A related issue is that of data compression as
ideally one would like to store as minimal information as
possible to maximize the effectiveness of the hardware. But
even if the spatial constraints are resolved, the issue of how to
interact with the data within a reasonable period of time still
remains. Data analysis tasks such as asking an ad-hoc query
become ineffective for large scale data sets if the time to find
and retrieve the exact answer to the query posed is often
longer than the user is willing to tolerate. This is especially
true if the scientist is in an exploratory data analysis mode and
has several questions that they would like to examine.

To deal with time constraint problem, one approach that has
been used recently is approximate querying systems, which

seek not to provide an exact solution to the posed query but an
approximate one. The rational is that the user may prefer a fast,
approximate answer as they explore the dataset to develop a
better understanding of truly interesting queries and/or regions.
To this end, Acharya, et.al., 1999, Acharya, et.al., 1999a,
Chakrabarti’s, et.al., 2000, Ioannidis and Poosala (1999), Vitter
and Wang (1999), Vitter and Wang (1998) have developed
different approaches for dealing with aggregate and range
queries in an approximate fashion.

However, the emphasis in the above approaches focused on
the issue of a fast query response system and did not
specifically address the issue of storing such large data sets.
This latter point is important if the user should wish to revisit
the data set which, owing to its size, will often have to be
moved to tertiary storage as is often the case with scientific
simulations. Accessing the data at such locations is often
prohibitive time-wise and should be avoided if possible. As a
result, what is needed is a system that not only allows
approximate ad hoc queries but also provides a compact
representation of the data that is far easier to store and access
compared to the original. A survey of the literature uncovers
that Hachem, et.al. (1995) have implemented a system where
polynomial regression models are used to model non-spatial
data and the regression coefficients are stored in the database.
In response to a query, the data are reconstructed from models.
Such a system provides the benefits of approximate query
response but at a far smaller storage cost.

Following a similar approach independently, the
DataFoundry team at Lawrence Livermore National Laboratory
has developed the Approximate Ad-hoc Query Engine for
Simulation Data (AQSim). The goal of AQSim is to provide a
software framework that not only allows relatively fast
interactive adhoc query capability of terabyte scale data but
also provides a compact representation of the data. This is
achieved by constructing mathematical models of the data at
different resolutions. In effect, these models act as data
“proxies” and perform in their place in response to a query
submission. This has several benefits. First, the different
resolutions of the data allow the user to trade off time for
accuracy. Second, along with an index file, only the model
parameters are stored in a file. As this number is often smaller
than the original dataset size, the shelf-life of the dataset can be
extended. The user can send the original data to archival
storage but can query using the model parameters for data
reconstruction. Finally, as mathematical models often
characterize different facets of the data, the model parameters
themselves may provide additional insights not apparent when
just dealing with the original raw values. Thus, in contrast to
Hachem, et.al.’s work where only one model is used to address
the different query needs of the scientists, AQSim uses multiple

 2

models. While AqSim is built for dealing with the spatio-
temporal nature of the scientific simulations for the Accelerated
Strategic Computing Initiative program (ASCI), the framework
is generic enough to be applied to other domains that deal with
terabyte scale datasets.

In this paper the focus is on the modeling aspect of the
AQSiM framework. Section 2 provides a brief overview of the
entire system. Section 3 discusses the modeling issues that
need to be addressed. Current results of AQSiM are presented
in Section 4. Finally, conclusions and future work are
discussed in Section 5.

2. AQSim Framework
Figure 1 shows the AQSim framework under construction. The
system is divided into two phases: preprocessing and query
processing. The goal of the first phase is to take the original
data and build the model files and index structures necessary to
support the query processing step which follows it. As the
focus will be on developing a compact and accurate data proxy,
more time and computational effort is placed in this initial
period. The rational is to concentrate the computational burden
when the data is close at hand and still away from the user. In
this way, the time spent during query processing which is
where the user is expected to spend the bulk of their time can
be minimized. The input to the preprocessing will be the
original data itself, the selection of models to be implemented,
and a partitioning scheme.

To achieve the approximate query answer capability, the
data is statistically characterized and modeled at different
resolutions. These resolutions are created by partitioning the
data into progressively smaller subunits and then subsequently
modeling each of these partitions by the selected models. This
procedure is repeated until the partitioning reaches a selected
threshold upon which it is terminated. The current partitioning
scheme is bisect the data along each of the spatio-temporal

coordinates (x,y,z,t), thereby creating a 16-way tree. The
rational was to take advantage of the spatio-temporal nature of
the scientific simulations that were being studied. In any event,
the end result is a tree structure. The root node represents the
entire data set with each of its children (and subsequent
children) representing a different subset of the data. Each node
contains the following statistics about the data that was in it:
number of data points, number of models built on the data in
that node, the types of models used, model errors, and for each
variable, its corresponding mean, standard deviation, minimum
and maximum values. As will be discussed later, this
information will be used by the index searcher when searching
for a response to a query.

 If directly implemented as stated above, one problem that is
immediately encountered is that is it unlikely that a model built
with a majority of the data is accurate or that it can be built in a
reasonably short time. Hence, to balance the time-accuracy
tradeoff, the key is to fix the model complexity for each node.
The supposition is that as the data becomes increasingly
partitioned, the localization will increase the likelihood that a
model of fixed complexity will be able to model the behavior
reasonably well. A comparable analogy is to break a nonlinear
curve into piece-wise components which depending on the
length of the component can be sufficiently linear for linear
regression models to be built on the components. Naturally,
there is no guarantee that the accuracy will reach what is
desired but this combination of partitioning and modeling is
being used to a first approximation. As will be discussed in
Section 5, identifying metrics as to when to build models as
opposed to having them built at every node is a research topic.
If such a metric is found, it can decrease storage and
computational costs of building models to only those that are
needed.

Once the partitioning and model building is done, the output
from the preprocessing stage is an index file containing all the
node information along with the corresponding model files. It

Index
Constructor

Mesh Partitionerindex files

Mesh conversion

mesh file

reformatted data

model files

Query processing Preprocessing

Modeler

Index Searcher

data value

Query
Engine

Predicate Processor/
Data Value Reconstructor

Metadata

index to use

query

Visualization

filtered data value

Index
Constructor

Mesh Partitionerindex files

Mesh conversion

mesh filemesh file

reformatted data

model filesmodel files

Query processing Preprocessing

Modeler

Index Searcher

data value

Query
Engine

Predicate Processor/
Data Value Reconstructor

Metadata

index to use

query

Visualization

filtered data value

Figure 1. Framework for AQSim.

 3

is important to note the original data is not stored in either the
index or model files. The nodes only contain the information
listed above along with pointers to its children. The model files
only contain information about the model parameters that were
used for each node. Hence, it is hoped that these subsequent
files will be smaller in size than the original data. So, if a
particular section of the data is to be reconstructed one needs to
know which node and which model to use to reconstruct that
particular subsection.

The query processing phase is the side that deals primarily
with the user and is the means by which they present queries to
the system. After the index and model files have been
initialized and read in by the system, the user can pose adhoc
queries to the query engine. The query engine then identifies
the variables and predicates in the query and selects an index to
use based on the metadata. An index searcher then examines
the index nodes using the statistical information contained
within them to determine which nodes (and models) are most
relevant to the query. A list of candidate nodes is then sent to a
predicate processor/data value reconstructor, which then
reconstructs the data and formulates a response. During this
period, the user can specify the accuracy of the response and
this information will be used to determine how deep within the
tree to search. Once the data has been reconstructed it is then
sent to a visualization tool to view the results.

3. Modeling Issues
 As the models act as proxies for the data, it is essential that a
set of criteria or metrics be developed to assess the feasibility of
using a particular model for the AQSim system. Initially, our
focus was on traditional modeling criteria such as model error
and complexity as these are often used to assess model
performance. Unfortunately, due to the scale of the data
involved and the tight coupling with respect to queries, these
criteria were found not to be particularly informative. For
example, model error as a measure of model accuracy was
relevant but its importance was somewhat reduced to due to the
multiresolutional structure of the tree which reconstructs the
data, in principle, at a higher accuracy (baring overfitting) as
the leaves of the tree are approached. But as this is
nevertheless an important measure, mean square error or root
mean square error was selected as a model error metric to
establish a standard.

Similarly, model complexity was also viewed at first as
important but oftentimes metrics such as Akaike or Bayes
information criteria are often used to compare among a set of
models, balancing model simplicity with error, Myung (2000).
The drawback was that the size of the datasets precludes the
building of several models or even iterating over the same
model to obtain a better fit.

As such, a new set of criteria has been developed focusing
primarily on the computational and storage cost of building
models as well as examining their applicability for dealing with
various query types. The former has been simply termed as
model building whereas model queryability is used for the
latter.

3.1. Model building
Here, the goal is to assign some semi-quantitative measure to
how computational expensive building a model can be as well
as the associated cost of storing the model parameters. Assume
that yi is the ith variable of the original data and xi is a vector of
independent variable(s) associated with yi. xi is denoted as a

vector to emphasize generic-ness. X can be another variable in
the data set (univariate model), a collection of other variables
(multivariate model), or simply an index. With this in mind,
the model is formulated as such:

);(iii fy θx= (1)
where f denotes the model itself and θθθθi is a vector of model
parameters (coefficients)

The computational cost of building the model (equation 1)
per node is expressed in big O-notation (Cormen, et.al., 1998):

O(F(n)) + r*O(G(n)) (2)
where n represents the number of samples in a given node,
O(F(n)) represents the cost of building the initial model where
F(n) also includes any model specific preprocessing steps, r is
the number of steps needed to refine the model to either a
desired level of complexity or error (r > 0), O(G(n)) is the cost
of the model refinement steps where G(n) represents the
functional form of the cost as a function of the number of
samples. G(n) may be the same as F(n) or functionally
different. F(n), G(n) represent the generic function forms. (eg.
they can be n, nlogn, n2, etc). The term “r” encapsulates the
iterative nature of the refinement process dealing with issues
such as increasing the number of knots in a B-spline or the
processing steps for determining the appropriate wavelet
coefficient threshold values to achieve a target error. If the user
desires a more accurate model, the price is the additional
computational time required to refine the model.

Once the model has been built, there is the issue of the
storage size of the model. The storage cost per index tree
node, s, can be estimated as

s = p * v + i (3)
where i is the size of index mapping, v is the number of
variables, and p is the parameter size per variable, which is the
size of θθθθi (number of coefficients, for example) multiplied by
the size of the data type used (e.g., integer, float, double). In
general, the parameter size cannot be readily estimated since it
is dependent on the data distribution and the level of error
specified. However, if the model complexity is set, the size can
be estimated as the user explicitly limits the number of
parameters per variable. Finally, the index mapping may or
may not exist depending on the model type but is presented for
completeness. It represents any additional bookkeeping that
may be required to reconstruct the data.

3.2. Model building trade-offs
The above presents a formalism to estimate the cost of model
construction in both memory and computation. The following
general observations can be made:
• As partitioning occurs, n becomes smaller so the

computational cost goes down although functionally
equation 2 remains the same.

• If lower modeling error is desired, this usually translates
into an increase in r of equation 2 -- increasing the number
of iterations to bring the model to convergence. θθθθi is also
likely to increase (but not always) in size as additional
parameters are needed to bring the model to target error
levels. Depending on the modeling algorithm used, the
number of iterations and the parameter size may or may
not be tied with each other. In the case of regression,
additional model terms are introduced to reduce model
error so the iteration and parameter size are linked. On the
other hand, with neural networks, the weights of system do

 4

not change in number but their values are adjusted with
each iteration cycle.

To summarize, to assess the full impact of model building, the
following need to be known:
• Initial model cost – O(F(n))
• Model refinement cost – O(G(n))
• Model complexity (related to error as well) – this sets r

and size of θθθθi
• Bookkeeping – is it needed and if so how big
Once this is known, equations 2 and 3 can be used to estimate
cost and storage requirements on a per node basis for a given
model. This information then forms a basis by which different
models can be compared on a model construction/memory
storage criteria. To consider the effect of the entire data set,
multiply the above estimates (equations 2 and 3) by the number
of nodes in the index tree and adjust for n in the different nodes.

3.3. Model queryability
As mentioned previously it is not sufficient that the model
simply reconstruct the data to within a small error as the nature
of the gigabyte+ scale data make build such models
computationally expensive. Ideally the most useful models are
the ones that not only reconstruct data well but are amenable to
dealing with a variety of queries. It is this issue of
“queryability” that will be discussed in this section.

In brief, queryability considers the question “Short of
reconstructing the data, how can the model structure of
functionality be used to answer the query?” All the models in
AQSim have the capability of reconstructing the data to varying
degrees of accuracy. However, some models will capture
different aspects of the data structure in their formulation than
others. For example, with the case of simple linear regression
of y = mx + b the parameter m contains information on the rate
of change of y with respect to x. This ease of information
access is what needs to be characterized in order to effectively
determine which model to use to answer a query. Ideally, the
goal is to arrive at a mapping that would associate particular
models to certain query types. To achieve this, a set of criteria
is needed to assess the feasibility of different model types in the
context of the queries that may be presented.

As AQSim will incorporate multiple models, understanding
the applicability or relevance a particular model may have in
the context of responding to a query is essential. A survey of
the literature does not reveal any type of model/query
association metrics and points to a need to develop one for this
system. In addition, considering the variety and complexity of
queries that may be asked, it is unlikely that a single
quantitative metric can be arrived to measure queryability.
Instead, it may be more feasible to break the assessment into
“semi-qualitative” and “semi-quantitative” components. The
former focuses on breaking down the query types into different
categories such as the one listed below. (This is a rough list and
not meant to be exhaustive or mutually exclusive)

1) range – for a given input, find the associated output
2) aggregate – find how many data samples satisfy a

given query predicate
3) scale-dependent patterns/ “dynamicity” – find similar

types of behavior at the specified scale
4) topological – find the samples that are within a

specified target range
5) variable interactions – find the data samples that satisfy

the specified variable relationships

6) area/volume effects – find the area or volume for a
particular variable condition

7) domain-specific – user defines a function of interest in
the query predicate

Each model candidate is “graded” on their ability to deal
with the different categories, specifically whether they are able
to address such queries (apart from brute force data
reconstruction) and how accurately. An additional
consideration may be to assign a weight to the different query
types as to how likely they are to occur and/or how important
they are. Ideally, the models that are selected for the AQSim
should be complementary with respect to each other to
minimize redundant coverage. In this regard, models that are
domain-specific probably should probably be always included
since it is assumed that their construction contains domain-
relevant information, which would not to be readily available
from the original data. But again this need may have to be
balanced with respect to how often would that kind of
information is requested. The semi-quantitative aspect may be
viewed as the number of data processing steps and/or
computational time required to process the model to arrive at
the desired output. For example, if the query is of a range type,
specifically “Find all x for this value of y” and two models exist
-- one model is that of a spline regression (y = f(x)) and the
other is a wavelet (x = f(i), y = f(i)), estimating how long would
it take each model to arrive at an answer is an interesting
metric. The former would require solving for the roots of the
polynomial whereas the wavelets may simply reconstruct all the
data for given range and then apply a filtering operation to
isolate the relevant answers. It should be emphasized that this
type of analysis is semi-quantitative in nature since it is highly
dependent on the distribution of the data and initial starting
points.

3.4. Model-query interaction
This section focuses on the cost of interacting with a model to
get the desired answer to the query. The knowledge gained here
allows models to be compared on the basis of how
computationally expensive they are when dealing with queries.
Assume that the user poses the query in the form, “Given yi,
provide h(xi).” Again, yi denotes a variable of the original data
set. H(xi) is presented here as the generic output needed to
answer the query. In its simplest form, h(xi) = xi where xi is
similar to the one used in equation 1 with the focus on either a
single original variable or a collection of variables (since the
index is not part of the original data the user is not likely to
make any inquiries about it). In a more advanced form, h(xi)
may be a user-defined function that uses as input xi. To answer
the query (find h(xi) for yi), the procedure is to start with what
the model provides and then process the results until the desired
information becomes available. This cost of answering a query
essentially can be estimated by equation 4 (Corman, et.al.,
1998):

∑∑
==

=
m

i
i

m

i
i nfOnfO

11
))(())(((4)

where m = number of processing steps required, O(fi(n)) is the
computational cost associated with each processing step i, n =
number of samples. It is assumed that the processing costs are
linearly additive. The key lies in what is meant by a processing
step. Consider that there exists a model for a single variable, x
= f(i) where i is an index, and another model for a different
variable, y = g(j) where j is a different index. For a “Find the x

 5

associated with y,” this would require creating or learning the
mapping between i and j, say i = m(j), if the appropriate x-y
pairs are to be uncovered. This mapping would be a processing
step in addition to the one where for the given y, the j’s would
have to be generated, j = g-1(y), – another processing step. The
cost of answering the queries requires both steps be processed.

As another example, assume that xi of equation 1 is some
multivariate collection and again the query is “Find the xi
associated with yi.” This can be answered by solving the
inverse of equation 1 and, for illustrative purposes, it is further
assumed that this is O(n2) :

)(1
iyf −=ix (5)

This is not the only approach to solving the problem. A naïve
but simple alternative would be to reconstruct the data for all
available yi and shift through to look for the xi’s of interest.
Assume for the sake of argument that this is of O(nlogn) for the
generation and O(nlogn) for the shifting. Now, it is not clear as
to which approach, the solver or the naïve one, is better. The
solver has one processing step but it is computationally
expensive. The naïve way involves two steps but individually
they are not as expensive. So, depending on which route, as
well as the sample size involved, the cost can vary. So,
equation 4 should be evaluated on both routes to obtain an
estimate of the cost with the goal of selecting the processing
route that is cheaper. Given two models, it is important to
determine how much it would cost to use one model over
another by breaking it down to the number of processing steps
required to generate the appropriate response, and the cost
associated with each step for each model. The final decision
based on choosing the lesser total of the two.

Note that this analysis can be expanded to go further than
just finding xi but can also consider the cost of generating h(xi).
The formulation of equation 4 is such that it can be used to
evaluate model performance against a range of query types.
This is done by the formulation of h(xi). For range queries, it
may be sufficient to have h(xi) = xi. To examine how they fare
on topological queries, choose the appropriate h(xi) and then
estimate the costs. This analysis, however, is not complete
because recall the model also has θθθθI’s. While the emphasis has
been on largely obtaining h(xi) from xi, it is possible that the
parameters themselves readily lend to h(xi) and this should be
considered when evaluating a model. For example,
“dynamicity” is reflected in the wavelet coefficients, while
information such as rate of change can be observed in the
coefficients of linear regression models. Note, equation 4
simply focuses on the processing steps but is not concerned
whether they involve parameters or xi’s. The complementary
criteria to the model building described in section 3.1 is to then
select the model with the lowest cost for a desired query type or
types.

In summary, for each model under consideration, it is
recommended to first use equations 2, 3, and 4 to assess the
computational cost and memory needs as the model is used
against different query types (if applicable). Note, that these
equations have some adjustable parameters, such as m and r,
and these will depend on the accuracy sought and the query
being asked. In general, the model that has the lowest cost in
computation and memory for a given query is a strong viable
candidate. This analysis has not considered tree search costs
since this cannot be determined from the model structure itself
but may prove to be substantial for some models (to obtain a
target accuracy) compared to others. The final assessment
should also consider this search cost as well once the index

searching protocol has been finalized. In short, a model that
answers the query of interest with minimal total computational
cost and memory is a strong candidate to be considered for
AQSim.

4. Results
Below is an illustration for a simple wavelet (finite length)
model and a statistical model using the mean as the model
using the criteria discussed in section 3. The results have been
broken into model building and model-query interaction and,
for the latter, with some selected query types of interest and the
memory usage.

4.1. Model building
Modeling building incurs the following computational cost.

wavelet stat
2*O(n) + O(n ln n) N*O(n)

Here, the cost for the wavelets includes the cost of scanning
through the data (a conservative high estimate is presented) and
the need to cull the wavelet coefficients to obtain a target error.
The scanning considers the cost of the downsampling when
performing the wavelet decomposition. Note that, as the
wavelet model is inherently multiresolutional, it can in theory
just work on the parent node and achieve a high level of
accuracy. As to the statistics model, the large N refers to the
total number of nodes in the index tree. To achieve a desired
level of accuracy, the data will be partitioned to the resolution
that is desired. If the data is widely distributed or high
precision is requested, N can approach or exceed n in value.
The reason is that if each leaf node is believed to contain a
single point then minimum N = n, but as this is only the leaves
and not the rest of the tree, N>n.

4.2. Model-query interaction
The following three query cases provide an overview of the
computational cost the two models incur when queried.

Range query:
wavelet model stat model
O(n) + O(n) O(ln N)
reconstruct/filter find relevant input

In the case of the wavelet, the extreme case is considered where
the entire data is reconstructed and then filtered upon to find the
values of interest. To simplify the analysis, only filtering was
considered. (It is possible to have the wavelet reconstruct
selected areas of the data ,but this would be covered by the
bookkeeping and its function form is not clearly known for the
purposes of this exercise.) It may be possible to shorten this to
O(d) where d << n if a mapping can be achieved by linking the
distribution of the data values to particular wavelet coefficients.
For the statistics model, the cost is largely in searching a tree of
N nodes to find the model values that satisfy the query.

Dynamicity query:
wavelet model stat model
O(ln C) O(n) + O(G(n))

Since the wavelet models stores information about the
dynamicity (variable activity) in the wavelet coefficients ,this
would simply be a search over these model parameters, C –
number of wavelet coefficients. For the case of statistical
model, it would require a reconstruction of the data followed by
further processing of the data to define the dynamicity function.
If something aside from standard deviation is desired, this can

 6

be costly. For example, G(n) = n2 for considering pair-wise
interactions.

Topological query:
wavelet model stat model
O(n) + ΣO(G(n)) m*O(ln N) + ΣO(G(n))

The primary cost of the wavelet lies in reconstructing the data
and then building the necessary topological function,
designated by the summation term. For the statistics model, the
cost lies in finding all the relevant nodes m and searching
through a tree of N nodes. Once the data is obtained there is
the issue of building the topological function just as in the
wavelet case.

In general the wavelet model is advantageous because of the
ease by which the data can be reconstructed to a high level of
accuracy. For the statistics model, there is the cost of searching
through the index tree but its accuracy is unlikely to match that
of the wavelet system unless a large index tree is created in
which case N (nodes) can be greater than n (number of samples
in original data).

The two models use the following memory space per
variable.

wavelet model stat model
C + n 2* N

For the case of the wavelets, C represents the number of
coefficients stored for a given level of accuracy and the n is to
indicate the size of the index bookkeeping where n is the
number of samples in the original data. In a worse case
scenario this would represent the mapping between unique data
values and the coefficients. If there are redundant values, it
may be possible to reduce n considerably. Furthermore, if a
common index scheme is used, then only one bookkeeping
system may be required as opposed to one per variable. This
would reduce storage costs considerably. As for the statistics
model, only two parameters are needed the mean and standard
deviation, hence the number 2. N refers to the number of nodes
in the index tree. Again if high precision is requested, N can
reach or exceed n as the mean’s ability to accurately reflect the
data increases as the partition size becomes increasingly
localized.

In summary, while the actual performance does vary
depending on the data distribution, it appears that if high
accuracy is desired N>>n, then a wavelet model would be
useful for most of the applications otherwise a statistics model
will do.

5. Conclusions and Future Work
The current implementation of AQSim only has a statistical
mean as a model but it is being upgraded to incorporate a
wavelet model to provide additional functionality. Additional
work will also be done in the areas of index construction for

high multidimensional data, partitioning schemes beyond the
spatio-temporal bisection currently in place, mapping of
model metadata to query types, and a metric to build models
selective. The significance of the last point is many modeling
techniques are computationally intensive to build, for
example, O(n3) for regression based systems. As there is no
guarantee that for given data distribution the resulting model
will produce a highly accurate model, a metric is needed to
guide when a model has a reasonable chance of successful
reconstruction. If the model performance is going to be poor,
it would be better to use the mean as a crude model owing to
computational efficiency.

 Other research areas in the context of model evaluation
include the following: how amenable the models are to being
parallelized, how automated the model construction can be,
how robust the model is to dealing with different data types,
and whether the model can be constructed online.

References
Acharya, S, Gibbons, PB, Poosala, V, and Ramaswamy, S
(1999), “Join Synopses for Approximate Query Answering,” in
Proceedings of the ACM SIGMOD International Conf. on
Management of Data (SIGMOD '99), June 1999
Acharya S., Gibbons PB, Poosala, V and Ramaswamy, S.
(1999a),”The Aqua Approximate Query Answering System”,
demo in ACM SIGMOD International Conf. on Management of
Data (SIGMOD '99), June 1999.
Chakrabarti, K, Garofalakis, MN, Rastogi, R, and Shim, K
(2000), “Approximate Query Processing Using Wavelets,”
Proceedings of the International Conference on Very Large
Databases, Cairo, Egypt.
Cormen,TH, Leiserson CE, and Rivest, RL (1998),
Introduction to Algorithms, MIT Press
Hachem, N, Bao C, and Taylor, S (1995), Approximate Query
Answering in Numerical Databases, technical report,
Department of Computer Science, Worcester Polytechnic
Institute
Ioannids, YE, and Poosala, V, (1999) “Histogram-Based
Approximation of Set-Valued Query Answers,” in Proceedings
of the 25th International Conference on Very Large Data Bases
Myung, IJ (2000), “The Importance of Complexity in Model
Selection,” Journal of Mathematical Psychology, vol 44, p 190-
204
Vitter, JS, and Wang, M (1999), “Approximate Computation of
Multidimensional Aggregates of Sparse Data using Wavelets,”
in Proceedings of the ACM SIGMOD International Conf. on
Management of Data (SIGMOD '99), June 1999
Vitter, JS, and Wang, M (1998), “Data Cube Approximation
and Histograms via Wavelets,” in Proceedings of the 7th
International Conference on Information and Knowledge
Management of Data

University of California
Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

	DISCLAIMER

